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1. SUMMARY OF ACTIVITY DURING CURRENT PERFORMANCE PERIOD

1.1 Development of the Long-term NOAA-11 SBUV/2 Solar Irradiance Data Set

During this period of performance, 1 September 1996 to 28 February 1997, we completed the long-

term characterization ofNOAA-11 SBUV/2 instrument sensitivity changes using coincident SSBUV

observations. This characterization was combined with the updated instrument calibration data

previously derived, and a complete reprocessing of the NOAA-11 SBUV/2 sweep mode solar

irradiance data was performed. Initial analysis suggests that errors due to uncorrected long-term

instrument drift have been reduced to 1-2% over the 5.5 year NOAA-11 data record. Assessments

of long-term changes in near and middle UV solar spectral irradiance during the peak and declining

phase of solar cycle 22 are now underway. Details of this work may be found in the attached

preprints of papers given at the American Geophysical Union (AGU) Fall 1996 Meeting and XVIIIth

Quadrennial Ozone Symposium.

1.2 Comparisons with Other Instruments

Pre "hminary comparisons between the NOAA-11 SBUV/2 solar irradiance data and contemporaneous

data from the UARS SOLSTICE and UARS SUSIM instruments were performed during this

performance period as part of the validation of the NOAA-11 data. The initial assessment of the

NOAA-11 SBUV/2 data suggests that the precision and long-term accuracy of this data set meets

or exceeds that of the Version 8 SOLSTICE and Version 16 SUSIM data sets. The attached copy

of the paper given at the AGU Fall 1996 Meeting presents this work.

We have similarly begun comparisons of the SSBUV solar data set (discussed in the following

section) with concurrent data from the two UARS instruments for the period for which UARS data

are currently available, 1991-1994.

1.3 SSBUV Analysis

Solar spectral irradiances for January 1996 SSBUV-8 mission were derived. Prelaunch, in-flight, and

postlaunch calibration data were first analyzed and a final radiometric calibration was determined.

Outgassing and solar exposure corrections were derived, and the raw SSBUV-8 solar data were fully

calibrated. The data were also wavelength adjusted to put them on a common wavelength scale with

the solar irradiance data from the previous seven SSBUV missions. The now complete SSBUV solar

irradiance data set covers the period October 1989 through January 1996. The SSBUV data are

being compared to coincident UARS SOLSTICE and SUSIM solar irradiance data.





1.4 NOAA-9 SBUV/2 Analysis

The instrument calibration for NOAA-9 SBUV/2 was updated through May 1996 as part of the

support for the NOAA ozone reprocessing activities. This instrument continues to operate as of

March 1997, and has now compiled an unprecedented 12-year record of solar UV spectral irradiance

data. Sensor aging related increases in the noise level of the NOAA-9 SBUV/2 solar spectral and Mg

II data were noted. If further support becomes available, we hope to apply the techniques we have

developed for correcting long-term instrument sensitivity changes to the NOAA-9 SBUV/2 irradiance

data set.

1.5 Additional Activities

Dr. Cebula served as a session chairperson at the Fall 1996 American Geophysical Union Meeting

on 18 December 1996. Dr. Cebula also served as a reviewer for papers submitted to the Journal of

GeophysicalResearch and Solar Physics. Mr. DeLand served as a reviewer for a proposal submitted

to NASA's Atmospheric Chemistry Modeling and Analysis Program.

1.6 Presentations and Publications

During this period of performance, a paper discussing a preliminary version of the corrected NOAA-

11 irradiances was presented in September 1996 at the XVIIIth Quadrennial Ozone Symposium in

L'Aquila, Italy. The written version of this paper was reviewed and accepted for publication in the

proceedings of the Symposium. A preprint of this paper is attached. A more comprehensive paper

describing the final correction procedures was given in December 1996 at the Fall 1996 AGU

Meeting in San Francisco, CA. A copy of that paper is also attached.

A second Quadrennial Ozone Symposium paper, presenting a retrospective of all of the SSBUV data,

was submitted and has been accepted for publication. We are presently finalizing the camera-ready

version of this paper, and a preprint will be provided as soon as it is available.

Three papers describing research results, previously presented at the SOLERS22 Workshop in

Sunspot, NM in June 1996, were submitted to Solar Physics. Two of these papers (NOAA-9 solar

activity, NOAA-11 Mg II index) have been accepted for publication, and a third paper (GOME first

results) is being revised to incorporate the reviewer's comments. Preprints of the two "in press"

papers are attached.

Two additional oral presentations were given at the Fall 1996 AGU Meeting. In the first paper we

presented SSBUV solar irradiance measurements, including those from the January 1996 SSBUV

mission. The second paper presented the latest work on the final recalibration of the NOAA-11

SBUV/2 instrument for both solar and ozone observations, using both internal data and SSBUV

comparisons.





A seminaronnearandmiddleUV solarirradiancemeasurementsandthe SSBUVsolarobservations
wasgivento HughesSTX Corporation'sCenterfor AstronomyandSolarPhysicson26February
1996. A copyof the view graphsfrom that presentation,whichwasanexpandedversionof the
SSBUVFall 1996AGU paper,is attached.

Finally, a paper discussing extensive comparisons between the reprocessed NOAA-11 data, UARS

SOLSTICE, and UARS SUSIM has been submitted for presentation at the Spring 1997 AGU

Meeting.
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2. WORK PLANNED: 1 MARCH 1997 THROUGH 31 AUGUST 1997

During the next period of performance 1 March 1997 through 31 August 1997, the following

activities are planned:

We will finish quality control efforts on the corrected NOAA-11 SBUV/2 spectral irradiance data,

create a 1 nm averaged data set for direct comparison with UARS SOLSTICE and SUSIM solar

irradiance data, and archive the data for FTP/WWW access on the SSBUV workstation. We intend

to announce the availability of these data to the solar physics community via the SolarNews monthly

newsletter.

The manuscript describing the creation of corrected NOAA-11 solar irradiance data set will be

completed and submitted to the Journal of Geophysical Research.

We plan to perform extensive statistical analysis of the NOAA-11 solar irradiance data. These results

will be compared to results from similar analyses of SOLSTICE and SUSIM data during the period

in which all three instruments were operating simultaneously (September 1991 - October 1994). A

summary of the results will be presented at the Spring 1997 AGU Meeting. A manuscript describing

the complete results will be prepared and submitted to Journal of Geophysical Research.

We will validate the SSBUV data record for all eight missions. A paper describing the SSBUV solar

irradiance data will be written and submitted to the Journal of Geophysical Research for publication.

A SSBUV 1 nm averaged solar irradiance data set will be created and archived on the SSBUV

workstation for FTP/WWW access. The availability of these data will be announced to the solar

physics community via the SolarNews monthly newsletter.





Manuscript accepted by Solar Physics 4 March 1997

COMPARISONS OF THE NOAA-11 SBUV/2, UARS SOLSTICE, AND UARS SUSIM

MG II SOLAR ACTIVITY PROXY INDEXES

Richard P. Cebula and Matthew T. DeLand

Hughes STX Corporation, Greenbelt, MD 20770 USA

ABSTRACT. A NOAA-11 SBUV/2 Mg II solar activity proxy index has been created for the period February
1989 through October 1994 from the daily discrete mode solar irradiance data using an algorithm that utilizes

a thorough instrument characterization. This product represents a significant improvement over the previously
released NOAA-11 SBUV/2 sweep mode-based Mg II data set. As measured by the NOAA-11 Mg II index,
the amplitude of solar rotational activity declined from approximately 4-7 % peak-to-peak near the maximum

of solar cycle 22 in 1989-1991 to roughly 1% peak-to-peak by late 1994. Corresponding to this decrease, the

27-day averaged NOAA-11 Mg II index decreased by 5.8% over this period. The NOAA-11 Mg II data set

is compared with coincident data sets from the UARS SOLSTICE and SUSIM instruments. The impact of
differences in instrument resolution and observation platform are examined with respect to both the absolute

value and temporal variations of the Mg II index. Periodograms of the three indexes demonstrate comparable

solar variation tracking. Between October 1991 and October 1994 predominate power occurs near 27 days,
with secondary maxima in the power spectra near 29 and 25 days. Overall, there is low power near 13.5 days

during this period. Dynamic power spectral analysis reveals the quasi-periodic and quasi-stationary nature of

the middle UV variations Iracked by the Mg II index, and periods of significant power near 13.5 days in mid
1991 and late 1994 through mid 1995.

INTRODUCTION

Variations in middle ultraviolet (UV, approximately 200-350 urn) solar irradiance are the primary driver of

stratospheric ozone variations. Recent work indicates a 1.5-2% solar cycle variation of global mean total ozone

(Stolarski et al., 1991; Chandra and McPeters, 1994; Reinsel et al., 1994) as well as solar cycle-driven

variations in lower stratospheric temperature and geopotential height (McCormaek and Hood, 1996; Hood,
1997). Tracking solar change in the photochemieally important region of the spectrum near 200 rim to an

accuracy of approximately 1% over a solar cycle is required to thoroughly understand the role of solar

variations on atmospheric change (L. Hood, private communication, 1997). While several measurement

programs are underway to measure solar cycle length UV irradiance variations (e.g. Cebula et al., 1996;

Woods et al., 1996; Weber et al., 1997), as a consequence of the difficulty of precisely tracking long-term
instrument response changes, the 1% accuracy goal has yet to be met.

In lieu of direct solar UV measurements of sufficient accuracy, proxy indexes have been used to represent

solar change. The core-to-wing irradiance ratio of the Mg II 280 nm absorption feature, commonly known
as the Mg II index, is a valuable tool for tracking solar UV activity (e.g. Heath and Schlesinger, 1986;

Donnelly, 1988, 1991; Cebula et al., 1992; DeLand and Cebula, 1993). A typical solar spectrum observed

by the NOAA-11 SBUV/2 instrument near the Mg II feature is shown as the solid line in Figure 1. The use

of an irradiance ratio cancels out most long-term instrument sensitivity changes which otherwise complicate



solarUV irradiance measurements, and the construction of a ratio with evenly spaced wings removes any

spectrally dependent changes which are approximately linear over the small wavelength interval used (A_,-

7 rim). Mg II index variations can be coupled with spectral scaling factors to estimate solar irradiance

variability in the 170-400 nm wavelength region (Cebula et al., 1992; Lean et al., 1992; DeLand and Cebula,

1993), which is important for understanding stratospheric photochemistry.

The initial Mg II index data set from the Nimbus-7 SBUV instrument began in November 1978, using 1.1 nm

resolution sweep mode solar data. In this mode the instrument scanned the solar spectrum from approximately

160 to 400 nm. These measurements were continued by the NOAA-9 and NOAA-11 SBUV/2 instruments,

with sweep mode (scanning approximately 160 to 405 nm) data beginning in March 1985 and December 1988

respectively. A composite Mg II index data set combining these three data sets was produced for the period
November 1978 to May 1993, and distributed to the user community (DeLand and Cebula, 1993). This data

set was designed to provide consistency with the Heath and Schlesinger (1986) Nimbns-7 SBUV Mg II index
by using the spectral scan Mg II data from NOAA-9 and NOAA-11. The SBUV/2 instruments also use a

discrete operating mode to observe the Mg II feature at 12 selected wavelengths with improved signal-to-noise

characteristics and superior long-term wavelength stability (DonneUy, 1988; DeLand and Cebula, 1994). The

NOAA-11 discrete mode Mg II solar data, which are available from February 1989 to October 1994, have

recently been processed with an updated absolute calibration and a thorough long-term immanent
characterization.

In this paper we present the NOAA-11 discrete mode Mg II data set and compare it with the previously

released sweep mode-based Mg II data set [the NOAA-9 SBUV/2 Mg II data set is presented in a companion

paper (DeLand and Cebula, 1997)]. We also compare the NOAA-11 data with coincident Mg II data from

the UARS SUSIM and UARS SOLSTICE imtruments for the period September 1991 to October 1994. This

provides an opportunity for a detailed examination of the impact of differences in both instrument resolution

and observation platform on the absolute value and temporal variations of the Mg II index. The robustness
of the solar variability information contained in the Mg II index is examined through statistical analysis of the

three data sets. Our approach is complementary to that of de Toma et al. (1997), who focus on the degree to

which the higher resolution SOLSTICE data reproduce the results of the lower resolution SBUV/2 instruments.

NOAA-11 Mg II CLASSICAL DISCRETE MODE PROXY INDEX

The initial NOAA-11 SBUV/2 Mg II proxy index used in DeLand and Cebula (1993) was based on sweep

mode data in order to provide continuity with the Nimbus-7 SBUV and NOAA-9 SBUV/2 data sets also used

in that paper. However, a Mg II proxy index based on SBUV/2 sweep mode data has a relatively poor signal
to noise ratio (SNR) in comparison to the SNR of the Nimbns-7 SBUV Mg II index. This is because the

SBUV/2 instruments measure the Mg II feature's wing irradiances at low count rate on the least sensitive

radiometric range of the instrument, and electronic noise lowers the SNR (Schlesinger et al., 1990). In
addition, the NOAA-11 instrument's sweep mode wavelength scale drifted by approximately 0.15 nm between

1989 and 1994, introducing an approximate 3 % time-dependent drift in the sweep-mode Mg II index. Daily

NOAA-11 discrete mode Mg II observations commenced in February 1989. An index constructed from these

dam has a much higher SNR than the sweep mode index, not only becausse of a factor of 12.5 increase in the

integration time, but also because limiting the wavelength interval scanned to the Mg II feature's region

increases the number of scans per day by a factor of 4-5 over the number obtained in the sweep mode (DeLand
and Cebula, 1994). Further, the NOAA-11 SBUV/2 instrument's wavelength calibration stability was an order

of magnitude better in discrete mode than in sweep mode (Ahmad et al., 1994). Using a subset of the discrete
mode data and a less rigorous instnmaent characterization, Donnelly (1991) has constructed a modified discrete

mode Mg II index from the NOAA-9 SBUV/2 imtnunent's data. That index was constructed to circumvent
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someofthelimitationsofthepreliminaryinstrumentcharacterization,with theresult that it was less sensitive

to solar variations than is the sweep mode index. DeLand and Cebula (1994) suggested that an analogous

classical discrete mode Mg II index, constructed from discrete mode measurements taken at essentially the
same wavelengths as were used for the Nimbus-7 SBUV Mg II index; and employing a full instrument
characterization, could combine the best features of the existing SBUV/2 proxy indexes.

The NOAA-11 SBUV/2 diffuser deployment mechanism failed on 16 October 1994, ending solar
measurements, but permitting the continuation of daily ozone measurements. Following the launch of the

NOAA-14 spacecraft on 30 December 1994, the NOAA-11 spacecraft was deactivated on 10 April 1995,

terminating NOAA-11 SBUV/2 observations. The NASA Goddard Space Flight Center's Ozone Processing
Team has recently completed a meticulous instrument characterization for the entire NOAA-11 SBUV/2 data

record (Hilsenrath et al., 1996). Using that characterization, we have processed the discrete Mg II data set
and produced a classical discrete mode NOAA-11 SBUV/2 Mg II index (hereafter Mg IINoAA.I_). The most

significant revisions to the processing algorithm are updates to the instrument's goniometry, photomultiplier

tube detector gain, and corrections for small discrete mode wavelength selection errors. The Mg IINoAA.H

proxy index is presented in Figure 2a. The solar rotational activity, as determined by approximate 27-day
variations in Mg IINo_.H, declined from roughly 4-7% peak-to-peak near the maximum of solar cycle 22 in
1989-1991 to approximately 1% peak-to-peak after mid 1994. Note that the strength of the rotational

modulation varies significantly from one rotation to next. Shown as the heavy solid line in Figure 2a is a 27-

day running average of Mg IINoAA.H,which removes the rotational modulation and shows long-term variations.

From this curve it is seen that the mean level of solar activity, as measured by Mg IINoAA.II,decreased by
approximately 5.8 % over this period.

The percent difference between the composite sweep mode-based index (DeLand and Cebula, 1993) and Mg
IINoAA.nis presented in Figure 3. During the period of overlap, 1989-1993, the composite index was based

on NOAA-11 data. The day-to-day differences are predominately the result of noise in the sweep mode Mg
II data, resulting from the SNR and sampling limitations previously disenssed. In addition, absolute and time

dependent differences are seen in Figure 3. The absolute difference is primarily the result of the procedure
used to create the composite index. As discussed in DeLand and Cebula (1993), both the NOAA-11 SBUV/2

and the Nimbus-7 SBUV Mg II indexes were normalized to the NOAA-9 SBUV/2 Mg II index during their
respective overlap periods. Due to small differences in the exact wavelengths used from one instrument to

the next, as well as small but nontrivial inter-instrument differences in bandpass and slit function, the absolute

value of each instrument's Mg II index and the instrument's sensitivity to solar change is unique (Hall and
Anderson, 1988). Further, a long-term drift in the NOAA-9 instnnnent's wavelength calibration resulted in

a 1% bias in its sweep mode Mg II index in 1989 relative to 1985. These effects explain the absolute
difference between the composite index and Mg IINoAA.Hshown in Figure 3. The minor drift between the

sweep mode composite index and Mg IINoAA.Hresults from uncorrected drift in the NOAA-11 SBUV/2

instrument's sweep mode wavelength calibration (DeLand and Cebula, 1994), and, to a lesser extent, revisions
to other components of the absolute and long-term instrument characterizations.

COMPARISON TO UARS SOLSTICE AND SUSIM MG II INDEXES

The later portion of the NOAA-11 SBUV/2 measurement period coincides with the availability of solar
irradiance data from the SOLSTICE (Rotlman et al., 1993) and SUSIM (Brueckner et al., 1993) instruments

onboard the UARS satellite. Both UARS instruments began taking data in October 1991. The SUSIM V18

Mg II proxy index data set extends through December 1995, and is based on daily spectral measurements taken

at 1.1 nm resolution (Floyd et al., 1997). The corresponding SOLSTICE V9 Mg II data set is constructed

from spectral data taken at 0.24 um resolution (de Toma et al., 1997; White et al., 1997). The two UARS



datasets,MgIIsoLsnc_andMgIIsus_M,arepresentedinFigures2band2c, respectively.Comparisonsof the
twoUARSMg11data sets to Mg IINo_,-Hare presented in Figure 4. The Mg IINoAA-Hand Mg Ilsus_Mindexes
are based on solar irradiance measurements taken at similar spectral resolution and are constructed using

similarly spaced (although not identical) core and wing samples. Hence, Mg IINo_-ll and Mg IIsus_Mshould

have approximately the same absolute value as well as comparable sensitivity to solar variations. Figure 4a
indicates that the ratio of the two Mg II indexes is nearly unity. However, there is roughly a 1.5% relative

drift between the two indexes during the f'trst seven months of overlap. After the SUSIM data were interrupted

for roughly 1.5 months due to problems with the UARS solar arrays, there is little additional drift from mid

1992 to the end of the overlap in the data record in October 1994. Although late 1991 and early 1992 is a

period of significant rotational modulation, the mean level of solar activity did not change substantially during

this seven month period. Further, from early 1993 to late 1994, when UV solar activity, as measured by the

two Mg II proxy indexes, decreased by 2.3 %, the drift between the two indexes was less than 0.5 %. Hence,
the relative drift in the NOAA-11 and SUSIM indexes in late 1991 and early 1992 is most likely due to a

systematic drift in one or both of the instruments' indexes rather than a difference in their response to solar
variability. Since the comparison of the Mg IINo_.H and Mg IlsotsncE indexes presented in Figure 4b does

not show a corresponding drift during this seven month period, we suspect there is an uncorrected systematic
drift in the Mg Ilsom,t during the initial phase of that instrument's operation. Mg IlsvsiM exhibits a similar drift

with respect to the NOAA-9 SBUV/2 Mg II data set, Mg IINoAA-9,presented by DeLand and Cebula (1997).

There is no relative drift between Mg IINoAA.9 and Mg IINoAA-H.

The relationship between Mg Ilsusl M and Mg IINoAa-ll is further examined via the scatter plot and linear

regression analysis presented in Figure 5a and Table 1. While there is an approximately linear relationship

between the two indexes for the entire period, the data for first seven months, denoted by the "X's" in Fig.

5a, clearly show more dispersion and an absolute offset relative to the data for the rest of the overlap period.
The linear correlation coefficient for the period October 1991-June 1992 is only 0.900, indicating that 20%

of the variance in Mg Ilsus_Mis not explained by the linear relation with respect to Mg IINo_-H- The linear
correlation coefficient for the rest of the data record, July 1992-October 1994, is 0.954. Therefore, for this

period about 91% of the variance in Mg II_slu is explained by the linear relation with respect to Mg IINo_-H.

The slope of the linear regression for the period July 1992 through October 1994 is 0.994, indicating that, as

predicted, the two instruments have very similar responses to solar change. Note that the correlation

coefficiem is slightly greater for the entire period, October 1991-October 1994 (r=0.963) than it is for the July

1992-October 1994 period, despite the inclusion of the early data with increased dispersion. This is a

consequence of the regression procedure; whereas the latter period encompasses only about one-half the

dynamic range of the solar cycle, the full dynamic range of the solar cycle is included in the former period.

A similar, although significantly smaller effect is seen in the regression between Mg IlsotsncE and Mg Ilso_.H
discussed below. It is therefore beneficial and important to maximize the dynamic range of the data sets used

in the linear regression analysis, provided that significant drifts have been removed. If the cause of the drift

in Mg Ilsusa_ can be identified and corrected, the relationship between Mg IlsosIM and Mg IINo_.H should be

redetermined using the entire dynamic range of the solar cycle. Doing so will yield a more accurate and

precise relationship than is currently achievable.

Interpretation of the comparison between Mg IIsoLsnCE and Mg IINoAA.I_,presented in Figure 4b, is more

complicated than is the comparison between Mg IINo_-H and Mg Ilsus_Mas a result of differences in instrument

resolution and processing algorithms. Figure 2 shows that the absolute value of Mg IIsoLs_CE is approximately
a factor of two smaller than are the absolute values of Mg IINoAA-_Iand Mg Ilsusua. A typical scan of

SOLSTICE -0.24 nm resolution solar spectral irradiance data in the vicinity of the Mg II absorption feature,

shown as the dashed curve in Figure 1, is useful in understanding these differences. The higher spectral

resolution data reveal significantly more spectral structure in the absorption feature than do the lower spectral
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resolutiondata.As observedby SOLSTICE the Mg IIh and k emission lines are visible as distinct emission

peaks in the core of the broad absorption feature. In contrast, these central emission peaks are not visible at

the 1.1 nm resolution of the SBUV/2 and SUSIM instnunents. Because of the higher resolution, the core of

the Mg II feature as observed by SOLSTICE contains no contr_ution from the photospheric wing wavelengths

(as opposed to the Mg II feature at 1.1 nm resolution, where the core contains a non-negligible photospheric
content). Since the core of the Mg II feature as observed by SOLSTICE originates higher in the solar

atmosphere at a correspondingly higher temperature than does the core of the feature when observed by
NOAA-11, Mg IIsoLsT_CEand Mg IINoAA.I l have different sensitivities to solar irradiance variations. Thus,
except for the non-linear behavior observed in early 1992, the change in the relative percent difference

between the two indexes presented in Figure 4b is physical rather than instrmnental in origin. Note that the

temporal dependence of this feature is quite distinct from the drift between Mg IIsuslMand Mg IINoAA.Hshown

in Figure 4a. We thus suspect this feature may result from an transitory feature in Mg IIsotsncE. A scatter plot
ofMg IIsoLs-nc_versus Mg IINoAA.H(Figure 5b) and linear regression analysis results (Table 1) show that the

two indexes are well correlated (r=0.984) and scale approximately linearly. In contrast to the comparison
between Mg IIsum_ and Mg IINoAA-Hpresented previously, note that the linear regression coefficients for the

October 1991-June 1992 (r=0.958) and July 1992-October 1994 (r=0.963) periods are nearly identical. The

slope of this regression fit is 1.40, which is almost identical to the result obtained by de Toma et al. (1997)
in their analysis of these data sets (Mg IINoAA.H= 0.153 + 0.696 * Mg IIsotsncE; Equation 8). As determined

from the extreme values of Figure 5b, the SOLSTICE index has approximately a factor of 2.2 greater response
to rotational and solar cycle change than do the lower resolution indexes (SBUV/2 and SUSIM). This

enhanced sensitivity, which is a consequence of SOLSTICE's higher spectral resolution, results in the change
noted in Figure 4b. de Toma et al. (1997) also degraded the SOLSTICE irradiance data to the nominal

SBUV/2 resolution and recomputed Mg II index values. They found a slope of 0.927 when these data were

regressed against Mg IINoAA-H. This indicates that, as observed in the Mg II feature, the higher resolution

SOLSTICE irradiance data are more responsive to chromospheric activity, even when degraded to comparable
resolution, than are the lower resolution SBUV/2 irradiance data. White et al. (1997) compared the effects
of degrading the SOLSTICE dam to the nominal SBUV/2 and SUSIM resolution. Consistent with the current

work, White et al. (1997) found that the sensitivity of higher resolution data to both solar rotational and long-
term modulation is approximately twice the sensitivity of the index when observed at 1.1 nm resolution. Scale

factors derived from SBUV/2 data (DeLand and Cebula, 1993) must therefore be rescaled for use with Mg
IIsotsnCE.

POWER SPECTRAL ANALYSIS

Using the technique described by Home and Baliunas (1986) and Lean and Brueckner (1989), we have

constructed periodograms of Mg IINoAA.H, Mg IIsotxac_, and Mg IIsus_M for the period of coincident

measurements, October 1991 to October 1994, to examine the power spectra of the three data sets. The

periodograms, shown in Figure 6, demonstrate comparable solar variation tracking between the three indexes,

consistent with the high correlation coefficients observed previously. For this period the predominant power

occurs with a period near 27 days, with secondary maxima in the power spectra near 29 and 25 days. Overall,

there is relatively low power near 13.5 days during the interval of coincident data. This indicates that, during
this period, solar UV variability was dominated by a single active region at a time.

Shown in Figure 7 is the result of a dynamic power spectral analysis of the three Mg II data sets. The analysis
was performed by fixing the periodogram data window at a width of 256 days and stepping through the data

sets in 64-day increments, following the work of Bouwer (1992). This analysis reveals the complex quasi-
periodic and quasi-stationary nature of middle UV solar variations. Note the significant changes in power



surroundingthedominant 27-day periodicity, which explains the presence of the secondary maxima noted in

Figure 6 near 29 and 25 days. Strong approximate 35-day and 30-day periodicities were observed by the

NOAA-11 instrument during late 1989 and mid 1990, respectively. Mg Ilso_.H also exhibits a period of

approximate 13.5-day solar variability from the middle of 1991 through early 1992, with the peak in the power
occurring shortly after the UARS launch. This variability indicates the emergence of active regions on

opposing faces of the Sun simultaneously. The very end of this episode of approximate 13.5-day periodicity

is just barely visible at the beginning of the Mg IlsotsncE data set. A period of relatively weak 13.5-day
periodicity was observed by all three instnunents in Spring 1993. This period gives rise to the small peak near

13.5 days seen in Figure 6.

An extended period of significant, approximate 13.5 day periodicity commenced in September 1994, shortly

before the termination of the NOAA-11 SBUV/2 solar measurements. The analysis teelmique employed here,

coupled with the termination of the NOAA-11 data set inmid October 1994, prohibits revelation of this change

in solar activity in the dynamic power spectra of Mg IINoAA-H- The Mg IIsus_ and Mg IIsoLsnCEdynamic

power spectra (Figures 7b and 7c, respectively) reveal the presence of this periodicity. As demonstrated in

the periodogram analysis presented in Figure 6 of DeLand and Cebula (1997), the NOAA-9 SBUV/2

instrument also observed persistent approximate 13.5-day solar variability from September 1994 through

March 1995. These observations are significant because this period of strong 13.5 day periodicity was

observed near solar cycle 22 minimum. During the only other solar minimum period monitored to date in the

UV, 1985-1986, very little 13.5 day activity was observed (Heath and Sehlesinger, 1986). These observations,
and the differences in activity seen during the maximum of solar cycle 22 versus that seen during cycle 21

maximum, suggest that each solar cycle is unique and that we are not yet at the point where one can simply

use the middle UV solar data sets we presently have to extrapolate to the future.

CONCLUSIONS

A classical discrete mode Mg II index, Mg Ilso__H, has been created from the entire six-year NOAA-11
SBUV/2 data set. This product has better signal-to-noise characteristics and long term accuracy than the sweep

mode NOAA-11 Mg II data set previously published by DeLand and Cebula (1993). Comparisons of Mg

IINo_. H with Mg IIsoLsncEand Mg IlstJs_ indicates that each immanent is capable of accurately tracking both

short- and long-term solar variations. There is an approximate 1.5 % relative drift between Mg IIsus_Mand Mg

IINo_.H during the ftrst seven months of SUSIM operations which needs to be understood. No corresponding

drift is seen between Mg IIr_oAA-Hand either Mg IIsoLsnCZ or Mg IINoAA-9. Mg IIsoLs'ncE and Mg IINo_.u

exhibit good linear correlation (r =0.984) even though the SOLSTICE index has roughly a factor of 2.2 greater

response to solar variations relative to the SBUV/2 index and Mg IlsotsncE exhibits a transitory feature with

respect to Mg IINo_,._ in early 1992, during the first year of SOLSTICE operation. The Mg IINo_.t_ data are

available from the authors (cebula@ssbuv.gsfc.nasa.gov). The Mg IINoAA-9data are also available from the

authors for the period June 1986 through May 1996. In the near future these two data sets will be combined

with the Nimbus-7 SBUV Mg II data to create a single Mg II proxy index covering the period November 1978

through May 1996.
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FIGURE CAPTIONS

Fig. 1. The Mg II doublet at 280 nm as observed by the NOAA-11 SBUV/2 instrument at 1.1 nm resolution

(solid line) and the UARS SOLSTICE instrument at 0.24 nm resolution (dashed line). Positions of the 7

wavelengths used to construct the SBUV/2 classical discrete mode Mg II index, Mg IINo_-u, are indicated by
the arrows. The wavelengths used to construct Mg Ilsosl M (not shown) are very similar to those used to

consa'uct Mg IINoAA.u. Positions of the wavelengths used to construct Mg IIsotxnCE are indicated by the small
boxes.

Fig. 2. Time series of Mg II proxy index products from three instruments: (a) the NOAA-11 SBUV/2
classical discrete mode Mg II index, Mg IINoAA-U;(b) the UARS SUSIM V18 Mg II index, Mg Ilsvslu; (c)

the UARS SOLSTICE V9 Mg II index, Mg IIsotsncE. The heavy line in (a) is a 27-day running mean of Mg

IINoAA-,-

Fig. 3. Percent difference between the SBUV-SBUV/2 composite Mg II index (DeLand and Cebula, 1993)

and Mg IINoAA-U- For the period shown here the composite index was based on NOAA-11 SBUV/2 sweep
mode data.

Fig. 4. Percent differences between the time series of the two UARS Mg II indexes and Mg IINo_-H for the

period of common measurements, October 1991 through October 1994: (a) Mg IIsus_M; (b) Mg IIsoLsnCE- The

crosses in panel (a) correspond to data taken during the first seven months of SUSIM operations and the

squares to data taken after this period. The SUSIM to SBUV/2 comparison is normalized by the absolute ratio
of the two indexes. As discussed in the text, the change shown in (b) is physical in origin.

Fig. 5. Comparisons of the two UARS Mg II indexes to Mg IINoAA-U:(a) Mg IIsusiM, and (b) Mg IIsoLsnCE.
The crosses in panel (a) correspond to data taken during the first seven months of SUSIM operations and the

squares to data taken after this period. The lines are the result of least square linear regression fits. In panel

(a) the dashed line is a fit to the period October 1991-October 1994 and the solid line is the fit to the period

July 1992-October 1994. The solid line in panel (b) is the result of fitting the entire period of coincident

8



measurements,October1991-October1994.

Fig.6. PeriodogramanalysisofthethreeMgII datasets for the period October 1991 through October 1994:

(a) Mg IINoaA-H;(b) Mg IIsusa_; (c)Mg Ilsotsnc _. The dashed line indicates the false alarm probability (FAP)
level of 0.1%; features with power above this FAP are statistically significant at the 99.9 % confidence level
(Horne and Baliunas, 1986).

Fig. 7. Dynamic power spectral analysis of the three Mg II data sets: (a) Mg IINo_.11; (b) Mg Ilsos_M; (C) Mg
IlsotsncE. Contour levels represent periodogram power in increments of 15, corresponding to the vertical scale
of Fig. 6. All contour levels shown are statistically significant at the 99.9% level.



Table1

Slope and Linear Correlation Coefficients Derived from Least Squares Linear Regression
Comparisons of Mg IlsoLs-ncEand Mg llsuslM with Mg llrqoAA-ll

DATA SET

All SUSIM: Oct 1991 - Oct 1994

SUSIM: Oct 1991 - June 1992

SUSIM: July 1992 - Oct 1994

All SOLSTICE: Oct 1991 - Oct 1994

SOLSTICE: Oct 1991 - June 1992

SOLSTICE: July 1992 - Oct 1994

SLOPE LINEAR CORRELATION
COEFFICIENT

0.852 0.963

0.855 0.900

0.994 0.954

1.40 0.984

1.31 0.958

1.41 0.963
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Solar UV Activity at Solar Cycle 21 and 22 Minimum from NOAA-9 SBUV/2 Data

Matthew T. DeLand and Richard P. Cebula

Hughes STX Corporation
Greenbelt, MD 20770 USA

ABSTRACT. Although solar ultraviolet (UV) irradiance measurements have been made regularly from

satellite instruments for almost 20 years, only one complete solar cycle minimum has been observed during

this period. Solar activity is currently moving through the minimum phase between Cycles 22 and 23, so it
is of interest to compare recent data taken from the NOAA-9 SBUV/2 instrument with data taken by the same

instrument during the previous solar minimum in 1985-1986. NOAA-9 SBUV/2 is the first instrument to

make continuous solar UV measurements for a complete solar cycle. Direct irradiance measurements (e.g. 205
nm) from NOAA-9 are currently useful for examining short-term variations, but have not been corrected for

long-term instrument sensitivity changes. We use the Mg II proxy index to illustrate variability on solar cycle
time scales, and to provide complementary information on short-term variability. Comparisons with

contemporaneous data from Nimbus-7 SBUV (1985-1986) and UARS SUSIM (1994-1995) are used to
validate the results obtained from the NOAA-9 data. Current short-term UV activity differs from the Cycle

21-22 minimum. Continuous 13-day periodicity was observed from September 1994 to March 1995, a
condition which has only been seen previously for shorter intervals during rising or maximum activity levels.

The 205 nm irradiance and Mg II index are expected to track very closely on short timescales, but show
differences in behavior during the minimum between Cycles 22 and 23.

1. INTRODUCTION

The first long-term record of solar spectral activity in the mid-ultraviolet wavelength region was obtained by the

Nimbus-7 SBUV (Solar Backscatter Ultraviolet) instrument, which obtained solar data in the wavelength range

160-400 nm from November 1978 to February 1987 (Heath, Repoff, and Donnelly, 1984; Donnelly et al., 1985;

Schlesinger and Cebula, 1992). These data are currently archived at the National Space Science Data Center

(NSSDC). This instrument was launched just prior to the beginning of the extended maximum activity period

of solar cycle 21 in 1979, and continued to gather data through the solar activity minimum between Cycles 21

and 22 in 1985-1986. Additional coverage from the declining phase of Cycle 21 through the rise of Cycle 22

(January 1982 - April 1989) was provided by the Solar Mesosphere Explorer (SME) experiment (Rottman,

1988).

Beginning in 1985, the SBUV/2 series of instruments have been launched by NOAA on TIROS satellites to

provide follow-on data to Nimbus-7 SBUV. These instruments continue the solar spectral measurements begun
by Nimbus-7, and make additional daily high-quality measurements of the Mg II absorption line at 280 nm. Data

are currently available from the NOAA-9 instrument from March 1985 to the present (e.g. Donnelly, 1988;

Schlesinger et al., 1990; Donnelly, 1991; Cebula, DeLand, and Schlesinger, 1992) and the NOAA-11
instrument from December 1988 to October 1994 (e.g. DeLand and Cebula, 1993; Hilsenrath et al., 1995;

Cebula and DeLand, 1997). The NOAA-14 SBUV/2 instrument was launched in December 1994 and began

taking solar data in February 1995, but grating drive problems have limited the usefulness of these data. Daily

solar UV data have also been taken since September 1991 by the SOLSTICE (Rottman et al., 1993) and SUSIM
(Brueckner et al., 1993) instruments on the UARS satellite, and since June 1995 by the GOME instrument



(Weber,Burrows, and Cebula, 1997).

While the available record of continuous solar middle UV data now spans 18 years, we are entering only the

second solar minimum with regular coverage. Previous studies have examined variations in solar activity

between descending, minimum, ascending, and maximum solar cycle phases by comparing different proxy

indexes (e.g. Pap, Tobiska, and Bouwer, 1990; Bouwer, 1992; DeLand and Cebula, 1993; Guhathakutra and

Pap, 1994). NOAA-9 SBUV/2 is the first instrument to make continuous measurements over a complete solar
cycle, and thus allow direct comparisons of activity levels from two separate solar minima. In this paper we

examine NOAA-9 irradiance and proxy index data for the Cycle 21-22 minimum period of 1985-1986 and the

Cycle 22-23 minimum period beginning in Fall 1994. The magnitude and periodicity of short-term variations

during these intervals are examined. Comparisons with Nimbus-7 SBUV Mg II index data during 1985-1986

and UARS SUSIM Mg II index data during 1994-1995 are used to supplement the NOAA-9 data, and illustrate
the differences between the behavior of the Mg II index and the 205 nm irradiance.

2. NOAA-9 SOLAR IRRADIANCE DATA

The NOAA-9 SBUV/2 instrument was launched on 12 December 1984, and made its first solar measurements

on 14 March 1985. It is a l/4-m Ebert-Fastie double monochromator (Frederick, Cebula, and Heath, 1986),

whose primary purpose is to measure terrestrial ozone profiles using backscattered UV radiation at 12 discrete
wavelengths between 252-340 nm. Two spectral scan ("sweep") solar measurements over the 160-406 nm

wavelength region are made on a single orbit each day, with ~0.15 nm sampling and 1.1 nm resolution. Step scan
solar measurements at the same 12 wavelengths used for ozone measurements are also made once per week. A

time series of the solar output at 205 nm from March 1985 to May 1996 as measured by NOAA-9 with no

correction for long-term changes in instrument sensitivity is shown in Figure 1(a). The NOAA-9 SBUV/2

instrument has no internal calibration system for monitoring such changes, which vary from less than -0.5%/year

at 400 nm to approximately -5 %/year at 200 nm (Cebula and DeLand, 1992). These changes are more rapid than

the predicted solar cycle irradiance changes at the same wavelengths (e.g. Lean, 1991), and are generally

monotonic in time rather than cyclic. Thus, while the short-term solar rotational modulation variations are clear

in Figure 1(a), the magnitude of the solar cycle variations cannot, at this time, be accurately quantified from these

data. We are currently developing a characterization of the NOAA-9 long-term instrument sensitivity changes,

and will present the corrected irradiance data in a future paper.

The Mg lI index, first developed for Nimbus-7 SBUV by Heath and Schlesinger (1986) and extended to NOAA-9

SBUV/2 (e.g. Donnelly, 1988; Cebula, DeLand, and Schlesinger, 1992), uses the core-to-wing irradiance ratio

of the 280 nm Mg ]I absorption line to eliminate most long-term instrument change effects and provide a

convenient measure of solar mid-UV activity. The core of the Mg 11line is generated in the chromosphere, while

the wing wavelengths are representative of the upper photosphere. Because the SBUV/2 measurements are made

at 1.1 nm resolution, there is a slight blending of photospheric radiation into the Mg 11product. Previous

comparisons of short-term variations have shown that the Mg II index and 205 nm irradiance (which is generated

in the upper photosphere) should have almost identical response amplitudes (Heath and Schlesinger, 1986;

DeLand and Cebula, 1993), so that the Mg II index is an accurate proxy for 205 nm variations. The NOAA-9

Mg 11index developed from spectral scan data is significantly impacted by noise due to the electronic design of

the instrument, and also experiences substantial wavelength scale drift with time. While these limitations were

anticipated prior to launch (Schlesinger et al., 1990), the spectral scan data were initially analyzed to provide

continuity with the Nimbus-7 Mg II product.

In May 1986, daily step scan ("discrete") measurements were initiated at 12 positions across the Mg II absorption



line.Asdiscussedby Donnelly (1988) and DeLand and Cebula (1994), these data are inherently superior to the

sweep mode data for constructing an Mg II index. DeLand and Cebula (1994) used the discrete data to produce
a "classical discrete" Mg II index with nearly identical absolute values to the Mg II index derived from the

spectral scan data, and greatly improved noise and wavelength drift characteristics. DeLand and Cebula (1994)

also compared the "classical discrete" Mg II index to the Mg II product of Donnelly (1991), and found similar

representations of solar activity using both NOAA-9 and NOAA-11 data. de Toma et al. (1997) find that the

NOAA and NASA Mg II index algorithms give very similar results when applied to NOAA-9 data. The time

series of the NOAA-9 "classical discrete" Mg II index is shown in Figure l(b). Rotational modulation is present

at peak-to-peak amplitudes of 2-7% throughout most of the solar cycle. The solar cycle amplitude is approxi-

mately 8% from the Cycle 21-22 minimum in 1985-1986 to the Cycle 22 maximum in 1989-1991. Comparisons
with the NOAA-11 "classical discrete" Mg II index indicate that these two data sets are consistent to within

approximately 0.5% during the overlap period 1989-1994. The NOAA-9 Mg II data suggest that after

approximately September 1994, solar activity levels are approaching the minimum level observed between Cycles
21 and 22.

3. SOLAR ACTIVITY DURING CYCLE 21-22 MINIMUM

Figure 2(a) shows the solar UV activity during the minimum activity period between solar cycles 21 and 22, using

the Mg II index measured by Nimbus-7 SBUV and NOAA-9 SBUV/2. The NOAA-9 "classical discrete" Mg

II data (dotted line), which began in May 1986, have an absolute offset of approximately -1.5% from the

Nimbus-7 sweep Mg II data (solid line) due to 0.03 nm differences in the wavelengths used to construct each

index. This absolute offset does not indicate a difference in the sensitivity of each Mg II index to solar variability,
as discussed in Cebula, DeLand, and Schlesinger (1992). The NOAA-9 discrete Mg II index shows excellent

agreement in both amplitude and phasing with the Nimbus-7 Mg II data (Figure 2(a)). The Nimbus-7 and

NOAA-9 Mg II data sets give a consistent picture of solar UV activity during the Cycle 21-22 minimum. No

long-term change was observed at the 1% level, and rotational modulation was generally 1% peak-to-peak (p-p)

or less, with no rotation as large as 2%. The last rotation with a 2% amplitude observed by Nimbus-7 SBUV in
Cycle 21 occurred in mid-1983.

In order to compare the NOAA-9 205 nm irmdiance data from 1985-1986 with the Mg II index data, we detrend

the 205 nm time series with a 4th order polynomial to remove all large scale changes, both instrumental and solar.

This allows us to focus on the short-term variations during this interval. This treatment is not intended to
completely characterize long-term instrument changes, and periodicities greater than approximately 3 months

should not be considered as significant. The detrended NOAA-9 205 nm irradiance data (Figure 2(b)) show

regular 27-day periodicity at the 1-2% p-p level. There are suggestions of 13-day periodicity in Fall 1985 and

Fall 1986, but the signature is not clear. A 13-day period in solar UV variations indicates the presence of active

regions on opposing faces of the Sun simultaneously, and has previously been seen only at times of rising or high

solar activity (e.g. DonneUy and Puga, 1990; Schlesinger et aL, 1990; Cebula, DeLand, and Schlesinger, 1992).

To evaluate the possible presence of such a period, we use the periodogram technique of Home and Baliunas

(1986) to examine the power spectrum of these data sets. Examples of periodogram analyses of solar variability

data are given in Lean and Brueckner (1989) and Lean (1990). This technique is well-suited to analyzing noisy

data, and accepts unevenly sampled data sets without interpolating to replace missing data points. The period-

ogram of the Nimbus-7 Mg II data set for the 1985-1986 time interval shows a strong signal at the nominal 27-

day rotational period (Figure 3(a)). The 27-day periodicity is weaker in the NOAA-9 205 nm irradiance periodo-

gram (Figure 3(b)) as a result of greater noise, but the signal is still quite clear. The horizontal dashed line in each

panel represents a false alarm probability (FAP) of 0.1%, defined-as the chance that a peak with the correspond-



ingsignalstrength is real if the input data were pure noise (Home and Baliunas, 1986). Using this criterion, we

observe that no statistically significant signal is evident in the Nimbus-7 Mg II pefiodogram at periods near 13

days. The NOAA-9 205 nm data shows a slightly stronger signal at approximately 13.5 days, but the peak is

also well below the FAP = 0.1% threshold. Any episodes of 13-day periodicity in the data of Figure 2 have

amplitudes of 0.3% p-p or less, which is comparable to the daily _1 o noise in the measurements. Thus, we are

unable to demonstrate 13-day periodicity during the 1985-1986 solar minimum at the 99.9% confidence level.

4. SOLAR ACTIVITY NEAR CYCLE 22-23 MINIMUM

The NOAA-9 discrete Mg II index data in Figure l(b) show a sharp drop in solar UV activity in April 1992,

signalling the end of the Cycle 22 maximurrL A steady decline in activity was observed from Spring 1992 to Fall

1994, followed by a relatively flat period from Fall 1994 to mid-1996. The precise location of the "minimum"

for Cycle 22 has not been identified as yet, and may not have occurred during the currently available data record.

However, the September 1994 - May 1996 period appears to be sufficiently quiet that comparisons of it to the

Cycle 21-22 minimum are valid. The NOAA-9 discrete Mg II data for July 1994 - May 1996 are shown as the

solid line in Figure 4(a). A spacecraft "safe mode" event interrupted all NOAA-9 SBUV/2 measurements in

February 1995, and the discrete Mg 11measurements were not resumed until September 1995. The NOAA-9

solar data have shown increased noise after a "power upset" in August 1995, and data after August 1995 shown

here should be considered as preliminary only. From October 1994 to February 1995, the Mg II index data show
a constant approximate 13-day periodicity. While the strength of this modulation is relatively weak, with peak-

to-peak amplitudes of < 0.5%, every 3rd peak (A t _ 40 days) has an increased amplitude of approximately 1%.

This situation is somewhat puzzling, since having a stronger magnetic region on one solar hemisphere to generate

approximate 13-day periodicity should produce increased amplitude on every second peak. From September

1995 to May 1996, the dominant period is again approximately 27 days. The detrended NOAA-9 205 nm

irradiance data also show a significant episode of 13-day periodicity (Figure 4(b)) from October 1994 to April

1995, with a continuous signal of approximately 1% p-p. The amplitudes of consecutive peaks are more regular

than for the Mg 11 index in Figure 4(a), and considerably stronger. A strong active region at solar minimum

conditions was present in June and July 1995, producing rotational modulation with an amplitude of 2% during

that time. As stated previously, fluctuations on timescales greater than 2-3 months should not be considered

significant in the detrended irradiance data.

The SUSIM solar UV instrument onboard the UARS satellite (Bmeckner et al., 1993) is a double mono-

chromator similar to SBUV/2, with a medium resolution operating mode of h _. = 1.1 nm from which a Mg II

index product is created. The response of the SUSIM Mg 11 index to solar variations is very consistent with that

measured by the SBUV/2 instruments (Cebnla and DeLand, 1997). SUSIM V18 Mg 11index data for July 1994 -

January 1996 (Floyd et al., 1997) are shown as a dotted line in Figure 4(a) to illustrate the Mg II index behavior

during February-August 1995. The SUSIM Mg II data agree with the NOAA-9 Mg II data to better than 1% in

absolute value during this period, and also show relatively weak 13-day periodicity during Fall 1994 with p-p
amplitudes less than 1%. Mg II index data produced by UARS SOLSTICE are also very consistent with the

NOAA-9 SBUV/2 data (de Toma et aL, 1997). The observed short-term variations are larger due to the higher

resolution of the SOLSTICE instrument (Cebula and DeLand, 1997; White et al., 1997).

The time series plots in Figure 4 suggest that the 205 nm irradiance measured by NOAA-9 has a stronger

response to 13-day periodicity in solar activity than the Mg II index. This difference in amplitude was noted for

Nimbus-7 SBUV data during solar cycle 21 by Donnelly and Puga (1990), who ascribed it to differences in the

center-to-limb variation between 205 and 280 nm. Periodogram analysis for the period September 1994 - March

4



1995verifiesthisconclusion.TheNOAA-9Mg II data, which are impacted by the data gap beginning in mid-

February 1995, show no 27-day power and barely significant power at 13 days during this interval (Figure 5(a)).
The SUSIM Mg II index data show 13-day power at roughly the same level as the NOAA-9 Mg II index (Figure

5(b)), and also have some power at a period of approximately 35 days. This latter signal is present at other times
when the complete SUSIM Mg II data set is analyzed (Cebula and DeLand, 1997), and coincides with the

__._..a ,,¢ th_ ",,aw maneuver" used to maintain the pointing of the UARS satellite. The periodogram
approximate w,,,,_ .....
of the NOAA-9 205 nm irradiance shows a much stronger peak at 13 days, again with no power at longer periods

(Figure 5(c)).

The results in this section demonstrate that 13-day periodicity in solar I.IV activity can occur at any phase of the

solar cycle. More importantly, the difference in response between the Mg lI index and 205 nm irradiance data

represents a possible limitation to the use of the Mg II index as a proxy for mid-UV solar variability. The
derivation of Mg 11 index "scale factors" by Heath and Schlesinger (1986) used only 27-day variations, and did

not examine shorter or longer timescales. Donnelly and Puga (1990) showed that the ratio of 13-day to 27-day

power observed in Nimbus-7 SBUV data during solar cycle 21 maximum in 1979-1982 was approximately 0.4
for upper photospheric and lower chromospheric radiation in the 175-290 nm wavelength region, whereas the
chromospheric Mg II absorption line had a smaller 13-day/27-day power ratio of -0.2. Thus, the Mg II index

appears to underpredict solar irradiance variability during episodes of 13-day periodicity in the wavelength region
which directly affects stratospheric photochemistry. This conclusion will be tested by comparing the NOAA-9

solar data with NOAA-9 profile ozone data, which will be reprocessed in 1997.

5. CONCLUSION

The NOAA-9 SBUV/2 instrument has made the first regular measurements of solar UV activity over a complete

solar cycle, beginning in March 1985 and continuing as of this writing (January 1997). The NOAA-9 solar
• • Cycles 21-22 and the current minimum at the end of Cycle 22.

irradiance data set includes the mnumum between
Although overall solar activity is low during these periods, 27-day rotational modulation is frequently present.

The episode of 13-day periodicity observed during September 1994 - March 1995 .shows that phenomena

previously associated with high levels of solar activity can occur at any point in the solar cycle. The 205 nm
irradiance and Mg II index measured by NOAA-9 showed very similar behavior during the Cycle 21-22 minimum

in 1985-1986, when 27-day periodicity dominated short-term solar variations, but behaved differently in 1994-

1995 during the episode of 13-day periodicity. We plan further investigations into the physical causes of this

result, since it affects the extent to which the Mg II index is an accurate proxy for 205 nm irradiance variations

during such episodes. The NOAA-9 Mg 1I data are available electronically from the authors (cebula-

@ssbuv.gsfc.nasa.gov, mdeland@ccmail.stx.com).

ACKNOWLEDGEMENTS

Walter G. Planet and H. Dudley Bowman of NOAA/NESDIS provided the raw SBUV/2 data. Dianne Prinz

and Linton Floyd kindly supplied UARS SUSIM V18 Mg II index data for this study. Judith Lean provided

operational IDL software for the periodogram analysis, as well as valuable advice on its use. This research was

supported by NASA grant NASW-4864.



REFERENCES

Bouwer,S.D.: 1992,Solar Phys. 142, 365.

Brueckner, G. E., Edlow, K. L., Floyd, L. E. IV, Lean, J. L., and VanHoosier, M.E.: 1993, J. Geophys. Res. 98,
10,695.

Cebula, R. P., and DeLand, M. T.: 1992, in R. F. DonneUy (Ed.), Proceedings of the Workshop of the Solar

Electromagnetic Radiation Study for Solar Cycle 22, NOAA ERL Environment Laboratory, Boulder,

CO, p. 239.

Cebula, R. P., and DeLand, M.T.: 1997, Solar Phys. (this issue).

Cebula, R. P., DeLand, M. T., and Schlesinger, B.M.: 1992, J. Geophys. Res. 97, 11,613.

DeLand, M. T., and Cebula, R. P.: 1993, J. Geophys. Res. 98, 12,809.

DeLand, M. T., and Cebula, R.P.: 1994, Solar Phys. 152, 61.

de Toma, G., White, O. R., Knapp, B. G., Rottman, G. J., and Woods, T.N.: 1997, J. Geophys. Res. 102, 2597.

Donnelly, R.F.: 1988, Adv. Space Res. 8, (7)77.

Donnelly, R.F.: 1991, J. Geomagn. Geoelectr., 43, suppl., 835.

Donnelly, R. F., and Puga, L.C.: 1990, Solar Phys. 130, 369.

Donnelly, R. F., Harvey, J. W., Heath, D. F., and Repoff, T. P.: 1985, J. Geophys. Res. 90, 6267.

Floyd, L. E., Reiser, P. A., Crane, P. C., Herring, L. C., Prinz, D. K., and Brueckner, G.E.: 1997, submitted to

Solar Phys. (this issue).

Frederick, J. E., Cebula, R. P., and Heath, D.F.: 1986, J. Atmos. Ocean. Tech. 3, 472.

Guhathakurta, M., and J. Pap, in D. N. Baker, V. O. Papitashvili, and M. J. Teague (Eds.), Solar-Terrestrial

Energy Program." The Initial Results from STEP Facilities and Theory Campaigns, Pergamon Press,

p. 129.

Heath, D. F., and Schlesinger, B.M.: 1986, J. Geophys. Res. 91, 8672.

Heath, D. F., Repoff, T. P., and Donnelly, R.F.: 1984, NOAA Tech. Memo. ERL ARL-129, Air Resources Lab.,
NOAA ERL, Boulder, Colo.

Hilsenrath, E., Cebula, R. P., DeLand, M. T., Laamann, K., Taylor, S., and Wellemeyer, C.: 1995, J. Geophys.
Res. 100, 1351.

Home, J. H., and Baliunas, S.L.: 1986, Astrophys. J. 302, 757.

6



_Tr_ ul rE. I

11.0

10.5

I0.0

9.5

0 9.0

"_ 8.5

8.0

(D

7.5
0

0.290

0.280

-- 0.270
l,-,,w

bid

0.260

0.250

NOAA-9 205 rim, Irradiance

,,I,, ,,ll,i,,l,,i,,l,,i,,I,,i,,l,,
1986 1988 1990 1992 1994 1996

NOAA-9 Discrete Mg II Index

(b)

5%

1986 1988 1990 1992 1994 1996

DATE



c_

.!
c_

C_

' ' ' ' I ' ' i , I ' ' ' '

s. _°°

,0

0 tO 0
t'- cO cO

0 0 0

x_puI II _IAI

t'-

O0 _L-- --

,,,, I,,,,1,,,,I,,, ,I ,,I

CO C_ _ 0
_-_ I

O_

6 [_.f- v_vp] _u_q9 lu_oa_d

tO
cO

tO
_ 00

O_

I

I



Periodogram for 14 March 1985 to 31 December 1986

0

100 _ ]

8O

40-

20

I I t I I I I

(a)

Nimbus-7 Mg H

..Z

0
_L

0

I00

8O

6O

4O

2O

0

50 40 35

-I I I

27 20 15 13 10

(b)

LAL_I___
50 4035 27

I

NOAA-9 205 nm Irradiance

20 15 13 i0

PERIOD [days]



Z_

E-_

>

E_

<

0
6Q

xapuI II _I8

r.D
O_

tO
O_
O_

tO
O_

[_z.f- v_vp] a_u'qtID luao.,ta d

CD
O_

tO

tO
O_
O_

O_
O')
,e-4



50

o

40

_ 30

t_

_ 20

0

o

40

•_ 30

a, 20

_ 10

0

Periodogram for 1 SepteTnber 1994 to 31 March 1995
I I I I t I

,,

NOAA-9 Discrete Mg:: II

(a)

..........
27 20 15 13 10

I I I

1°I o
50 40 35

50 _ I I l

m UARS SUSlM Mg II

(b)

50 40 35 27 20 15 13 10
5O

o

40

_ 30

_ 20

10
0

0

-I I I

(o)

50 40 35 27 20 15

PERIOD [days]

I I I I

NOAA-9 205 nm Irr'adiance

13 10

I

w

m





SSBUV Measurements of Solar

Spectral Irradiance Variations,
1989-1996

Richard P. Cebula
Hughes STX Corporation

HSTX Center for Astronomy and Solar Physics (CASP) Seminar

26 February 199 7

Supported by NASA Grant NASW-4864 and

NASA Contract NAS5-31755



Outline

Justifcation for UV solar measurements

Experiment• overview

• SSBUV solar measurements

• Absolute solar irradiance comparisons

SSBUV-measured solar change

Solar Change comparisons

Conclusions



Why Measure the Solar UV?

• Understand solar physics

/

- changes related to magnetic activity variations

Solar UV flux provides external forcing to

the Earth-atmosphere system

- ozone production & loss

- middle atmosphere dynamics

- stratospheric temperature

- coupling to biosphere, including UVB flux





NEAR & MIDDLE UV:

SMALL IRRADIANCE, BIG VARIATIONS

SPECTRAL

REGION

Total Irradiance

Mid & Near UV

200 - 400 nm

Irradiance

[mW/m 2]

Solar Cycle
Variation

[mW/m z]

Percent Variation

1367 1.4 0.1

111 0.33 0.3

(8% Of total) (24% of total)

Although middle & near UV region constitutes-8% of the total solar irradiance, variations

in this spectral region account for nearly one-fourth of the total amount of solar variabilityt.
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Table I..CO_VI"RIBUTIONS TO SOLAK CYCI_ TOT.A.L OZONE CK_GE

FROM DIFFER_I_T _SP_P._C PEESSUR.E KA.NGES

Uppm" St_atos_her_r.

.5- 1 -,hat
1- 2 mbar
2- 4 mbar

4% x -q2DU
4% x :L_DU
3% x 10.4 DU

=a_4 DU }
= o.13 DU 12_

= 0--"-'1DU

Middle Stratosphere:

4- 8 mbar
8- 16 mbar

Lower S tTa_osDhere:

16 - 32 mbar

> 32 mbar

0.3% x 25,.2" DU
0% x 47.7 DU

1._% x 70.?, DU

2.9% x 136.7, DU

%

= 0.i3 DU t,. 3%
=0DU J

"t

= _.o5 DU _ 85%
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SSBUV Overview

Instrument Stats

- spectral range: 200 - 405 nm

- spectral resolution: 1.1 nm

Missions

- Absolute irradiance: 2.4- 6.0%

- Time dependence: 1.0- 2.4%

- Eight flights: Oct. 1989 - Jan. 1996

- Includes three ATLAS flights, Mar. 1992 - Nov. 1994

- 6-8 scans/solar observation; 3-10 observations/flight

Uncertainties (2 cy)
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SOLAR IRRADIANCE COMPARISONS
29 MARCH 1992 (ATLAS-I)

i,i
(J 1.2
I
I'--

_1

1.1

1.0

> 0.9

CD
u_ 0.8
i/)

200

UARS SOLSTICE (V08)

I I I , I , * I I ' I I I

250 300 350 400

UARS SUSIM (V16)

l l I l I l l I l I I

250 300 350 400

(J,., 1.2__
0. 1.1
._1
o
(/)

1.0

0.9
(/1

0.8

SQLSPEC (V08) ___: :.
_ '_ ° ,° ,

_ .- ....... : • . ..._.:.,_ ," _. o

- . ._'. , :'.::, . _ ; :..

. o " " °" t:" % "" ° °"

- : : :.: -

I . , , , I . I I

200 250 300 350 400

1.2

:3
m 1.1

<_ 1.0

> 0.9
CD
(/)
u') 0.8

2OO

ATLAS SUSIM

• .__ •.
,, • • °° o; . • °, _ • ,,, _ o,

-_" _.'._ 7:., • ..• . ..": , : _ ,:

-

I l I ' I l I , , I

250 300 350

WAVELENGTH [NM]

I

400



_..I
.,¢:
z

laJ
I---
X
ILl

Z

I,I

>
:::)
m
U)
OO

COMPARISON OF

1.10

1.05

I I I I

1.00

0.95

SSBUV TO
29 MARCH

J I I I

OTHER SOLAR
1992 (ATLAS-1 )

I J I I I

MEASUREMENTS

i I I I I i

+2_ UNCERTAINTY

VARIANCE OF THE EXTERNAL DATA

-2_ UNCERTAINTY

0.90

200

i i , I

250

i I i i I i

300

WAVELENGTH

i , i I

550

[NM]
400



TYPICAL MIDDLE UV PROXY INDEXES
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Conclusions

Eight SSBUV missions 1989-1.996

SSBUV irradiances agree +2% with mean of
other solar flux measurements

Measured long-term solar change ('90-'94)

6.5% @ 200 nm

3.0% @ 250 nm

less than 1% longward of ~300 nm

SSBUV used to calibrate NOAA- 11 SBUV/2

Data release anticipated in early 1997
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The NOAA-11 SBUV/2 instrmnem made daily measurements of
the solar UV irradiance between 160 and 405 nm at 1.1 nm

resolution from December 1988 to October 1994, covering the

maximum and declining phase of solar cycle 22. Instrument

sensitivity drift was significant, ranging from approximately 30%

near 200 nm to roughly 4% near 400 nm. These changes are 3-4

times larger than the predicted solar irradiance variations in the
middle UV and near UV over a solar cycle. The SBUV/2 data

have been reprocessed using a long-term characterization
determined from both internal and external sources. An onboard

calibration system was used to monitor long-term diffuser
reflectivity changes, and comparisons with coincident flights of

the SSBUV experiment were used to remove additional NOAA-
11 instrument sensitivity drift.

We present NOAA-11 solar UV irradiance observations during
1988-1994 for spectral regions which drive atmospheric photo-

chemistry. The NOAA-11 results indicate a decrease of approxi-

mately 5-7% at 205 nm from the maximum of solar Cycle 22 in
1989-1991 through the end of the NOAA-11 record in October

1994, well into the declining phase of Cycle 22. The NOAA-11

irradiance data indicate an upper limit of roughly 1.5% on long-

term solar change between 290-310 nm during this period,

consistent with predictions from proxy indexes and sealing

functions. We will also compare the NOAA-11 observations to

the daily spectral irradiances from the UARS SUSIM V16 and
UARS SOLSTICE V8 data sets, both of which cover the period

September 1991 - October 1994.



SBUV/2 onboard calibration system monitors diffuser

reflectivity only. Long-term diffuser degradation has
been removed from time series.

Remaining insmmaem response changes are --2% near

400 nm, 20% at 200 nm.

Short-term solar variations visible at 205 nm, but

long-term change cannot be evaluated.

7 SSBUV flights available for coincidences during
1989-1994.

NOAA- 11

UNCORRECTED Data
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SSBUV absolute irradiances in good agreement with

other instrumems (i2% vs. UARS, ATLAS means).

SSBLW long-term calibration for 200-400 nm wave-

length region repeatable to approximately 1.0-2.4%.

NOAA-11 "Day 1" irradiance agrees with SSBUV

reference spectrum to approximately +5%, with some

spectral bias.

SSBUV Absolute

Irradiance Comparison
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Construct ratios of SSBUV flight averages and

coincident NOAA-11 data. Use of coincident spectra

removes solar change.

Remove "Day 1" bias, normalize SSBUV data for

each flight at 400 nm (adjustments are 4-0.5% or less).

Spectral dependence ofNOAA-11 response change is

fairly smooth. Small-scale structure caused by

residual uncorrected wavelengthscale drift.

Fit each spectral ratio with smoothing spline fimction

(CLOESS) to remove residual noise from A)_(t)

correction, accurately follow large-scale structure.

Characterize NOAA- 11

SPECTRAL Response
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1.04

NOAA- 1 1 Response Change using SSBUV [CLOESS fits]
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At each wavelength, construct time dependence

using spectral fit values from each SSBUV flight and

nominal "Day 1" value.

SSBUV-1 data excluded for _. < 275 nm due to

calibration problems.

Limited number of points suggests simple time

dependence. Quadratic fit works well, although

upturn in late 1994 may not be realistic.

True calibration changes with short time scales [t < 1

year] will not be well-represented.

Characterize NOAA- 11

TEMPORAL Response
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NOAA-11 spectral data have adequate S/N down to

170 nm, but SSBUV-based correction only available

for 200-400 nm. Spectral dependence of sensitivity

change different at 2_ < 200 nm -_ can't extrapolate

previous fits.

Estimate sensitivity change at 170-200 nm by

removing Mg II index-based predicted solar variation

from time series. Fit remaining data with quadratic

function for time dependence.

Long-term correction for 170-200 nm less precise
than 200-400 nm results based on SSBUV data.

Select fit values at 5 nm intervals for dates of SSBUV

flights, use as new "data" points with previous
continuous ratios.

CLOESS fits to full wavelength range preserve

spectral structure for )_ > 200 nm, give smooth shape
for _. < 200 nm.

Short Wavelength Data
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NOAA- 1 1 Response Change using SSBUV [ all wavelengths]
,_- 1.04 , , i , , , i , , , I , ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' t ' ' ' I

;_ 1.02

0.92

SSBUV- 1 (Oct 1989)

SSBUV-2 (Oct 1990)

SSBUV-3(Aug 1991)

SSBUV-4 (Mar 1992)

SSBUV-5 (Apt 1993)

SSBUV-6 (Mar 1994)

SSBUV-7 (Nou 1994)

180 200 220 240 260 280 300 320

Wavelength [rim,]

0.88

0.90

340 360 380 400



Reprocess all NOAA-11 data with corrections for

instrumem degradation (derived here), wavelength

scale drift, orbit drift (goniometry).

NOAA-11 results shown are 1 nm averaged spectra on

0.5 nm centers, for best comparison with UARS

SUSIM [V16], UARS SOLSTICE [V08].

Daily noise for 10 nm band averages approximately

+0.5% at short wavelengths, +0.2% at long wave-

lengths (/. > 300 nm).

Current NOAA-11 sensitivity change correction

leaves long-term residuals of -1-2% at long wave-

lengths. This accuracy is comparable to SUSIM,
SOLSTICE.

NOAA-11 Corrected Data

UARS Instruments
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NOAA-11 data cover complete solar maximum for

Cycle 22. Long-term solar changes (e.g. end of

maximum in Spring 1992) now visible at short

wavelengths.

Periodogram analysis shows consistent representation

of short-term solar activity at 200-210 nm for all 3

instruments. 27-day rotational modulation present

throughout 1991-1994, episode of 13-day periodicity
observed in Fall 1991.

Use NOAA-11 discrete Mg II index and scale factors

to estimate solar activity during 1989-1994. Scale
factors derived from short-term variations. Remove

this estimate from all time series.

Initial results indicate Mg II index predictions

represent long-term solar activity to --1-2% accuracy
at 205 nm.

Observed Solar Activity
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PERIODOGRAM for ,340--350 "n.m Data

Time Interval = 1991/260 to 1994/289
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PERIODOGRAM for ,.?80-880 'n,'rn. Data

Time Interval = 199;/260 to 1994/289
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Irradiance Data at 200-210 nm
Corrected for ESTIMATED SOLAR CHANGE
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NOAA-11 SBUV/2 solar irradiance data for

December 1988 - October 1994 have been corrected

for long-term instrument sensitivity changes using

SSBUV comparisons.

Residual long-term errors estimated to be approx-

imately 1-3%. Results are comparable to UARS

SUSIM, UARS SOLSTICE.

Observed solar activity for maximum and decline

of Cycle 22 consistent with Mg II index data.

NOAA-11 spectral irradiance data (1 nm average)
will be available in early 1997. See signup sheet
and/or authors if interested. Full instrument

sampling product (A _. = 0.15 nm) also available on

request.

CONCLUSIONS


